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ABSTRACT nodal integration provides reduced constraints such thatse

A stabilized, nodally integrated linear tetrahedral is fiou- mesh accuracy can be achieved for nearly incompressible-mat
lated and analyzed. It is well known that linear tetrahedsé- rials and plasticity. Finally, example problems demoristthe
ments perform poorly in problems with plasticity, nearlgom- improved numerical response of the proposed tetrahedralfo
pressible materials, and acute bending. For a variety osms, lation.

linear tetrahedral elements are preferable to quadratitake-
dral elements in most nonlinear problems. Whereas, mix¢d-me
ods work well for linear hexahedral elements, they don'tlifor FORMULATION

ear tetrahedrals. On the other hand, automatic mesh genera- In what follows, superscript indices in lower case (typligal
tion is typically not feasible for building many 3D hexahaldr  ¢) refer to element quantities and superscript indices ineupp
meshes. A stabilized, nodally integrated linear tetrahédr de- case (typicallyl) refer to nodal quantities. Here, the standard

veloped and shown to perform very well in problems with plas- weak form of linear elasticity is considered
ticity, nearly incompressible materials and acute bendiRgr-
thermore, the formulation is analytically and numericadlyown

17603
to be stable and optimally convergent. The element is demon- a(u,w) = f(w) uwe (H¥(Q)) @
strated to perform well in several standard linear and noahr

benchmarks. for the domainQ ¢ R3. The discrete problem reads
INTRODUCTION an(Un, Wh) = f(wp) (2)

L A nodally integrated tetrahedral element was first formu-
lated in [1] and further analyzed in [2]. The element was sthow
to perform well in several 2D bending problems but it was dote
that the formulation was prone to spurious low energy mobfes.
this work, a stabilization of the nodally integrated tetdrtal is
proposed. Itis then shown analytically that the proposééise
is stable and consistent for linear elasticity. As it turms, she

whereuy Wy, are the discrete trial and test functions respectively
based on linear tetrahedral interpolation and the distiétear
operatora,(Un, Wh) is based on average nodal integration. The
displacement gradient on the domain of elemefite. QF) will

be writtenOuf = {0Ouy : x € Q°} and is observed to be constant
on Q€. Furthermore, strains based on the trial and test functions
are respectively writtea® = Osup andde® = Osw® wherels is

"Work performed under the auspices of the U.S. Department ofggirey the symmetric gradient. In order to present the averagelnoda
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strain formulation, the se§ is defined to be the group of ele-
ments common to nodeandNg andN, are respectively the total
number of elements and nodes definedbrThe average nodal
gradientdu' and straire' at nodel are defined

1 Ve
ec§
1 1 Ve
é[Duh—i— (Ou)™] or € = T > Zse (3)

whereV € = vol(Q€) and the average nodal volume is given

VI b
ec§

4

"Virtual” nodal strain quantities analogous to (3) basedta
test functions are also defined

1 Ve

ecS

68':%[Dw'h+(DwL)T} or & —V|Z*5€ (5)

Considering the standard tetrahedral finite element digaten
for the equations of motion and applying the preceedingtinota
the bilinear form can be written as a sum over elementssum
over nodes as follows

(6)

a(Wh, Un)

Zveés - Ce®
_ZZ 689 Ce®

I=1ec§

@)

where, againg is the set of elements that are common to niode
andC is the material stiffness.

The following modified, nodal strain definition of the bilin-
ear form is proposed

O

(e &)
®)

wherea®! is a stabilization parameter that can potentially de-
pend on elemerg and nodel andC could be an alternate ma-
terial stiffness. Of cours€ = C would be the natural choice

an(Wh, Un) ZV 3¢ : Ce! +ZZae' 3e°) :

I=1ec§

but given a nearly incompressible material with Poissoation

v = 0.4999, better results may be obtained by letting Poisson’s
ratio bev = 0.4 in €. The average nodal strain formulation pro-
posed in [1] and analyzed in [2] is recovered whegi = 0. In
fact, results from aforementioned references are quitel glee
spite the absence of the stabilization term. Nonethelesgige-
nalysis in the RESULTS Section demonstrate the necessiteof
stabilization term.

STABILITY
The strain energy energy from (8) is written

an(Un, Up) = Zv's' Ce' + 2 ZZae' —£%):C(e' —¢®)
| lec§
©)
With a®' = 0, a spurious zero energy mode can arise in the event

of an infinite domain with a regular lattice of points where th
displacement oscillates such that strafiare positive to the left

of every node and negative to the right of every node thus pro-
ducing an average strag = 0 at every node and thus a zero
energy mode. For a finite domain, the zero energy mode can-
not propagate since the nodes on the boundaries have strain ¢
tributions from only one side thus precluding the zero eyerg
mode. Nonetheless, the energy of this above described naode ¢
be very small and stability in thid; norm is not ensured. With
the stabilization, the energy in (9) reduces to the follaywivhen
=0

an(Un, Un)

Zjizjz:ael € Ce®

I=1ecS

(10)

From Korn’s lemma (10) is always non zero for any displacemen
field modulo rigid body modes such that

an(Un, Un) > afjun||3 (11)

wherea is a mesh independent constant. Consequently, the form
(9) has no spurious zero energy modes and ist¥hesercive. In

the event thati® = 0, the discrete bilinear form may be greater
than zero for non-trivial displacements lutn (11) will depend
onh precluding it from the following convergence analysis.

CONVERGENCE

In this section, optimal convergence in tHé (energy norm) is
proved analytically for the proposed discrete bilineanfan (8).
Repeated indices will imply summation unless otherwiseispe
fied and the following notation will be used throughout forms



and semi-norms
1/2 1/2
Iyl = (/Q(yiyi +yi,jYi.j)dQ> |1 = (/QYi,jyi,de)
(12)

and the Frobenius norms will be used for matrices where for ex
ample

y=R™ |yl = (yjy)"? i=1:mj=1:n
Strang’s first Lemma is defined
u— uh||1<C |nf [||u Vall1+ sup a(Vh, Wh) — an(Vh, Wh)
WheVh [|Whl|1

(13)
whereu is the exact solution to the boundary value problem and
up is the solution to the approximate weak folg(wh,un) =
f(wnh) Because (8) is coercive (i.e. stable) (13) can be used to
establish its rate of convergence. From hereon, let

=Mhu (14)

be the interpolant ofi thus from approximation theory [3Ju—
vh|l1 < Ch. Hence, it will suffice to show that

a(Vh, Wh) — @n(Vh, Wh)

<Ch
[[Wh||1

sup
WhEVH

(15)

Exploiting the symmetries of the elasticity tensbthe exact bi-
linear form (7) can be written in terms of the gradients

a(Wh,Vh)

ZZ—DV\F COve

I=1ec§

(16)

Furthermore, the modified bilinear form (8) can be rewritten

an(Wh, Vh) = ah(Wh, Vh) + & (Wh, Vn) (17)
where
al (Wh, Vh) ZZ—DWE COv, (18)
I=1ec§
a5 (Wh, Vi) ZZae' DW Owe) : €OV — Ov8)  (19)
I=1ecS

and where (5) was used to elimind& in (18). Our first task is
to show that

a(Vh, Wh) — af(Vh, Wh)

<Ch
[[Whll1

sup
WhEVL

(20)
Equations (16) and (18) provide the following difference

a(Vh, Wh) — aj(Vh, Wh)

ZZ—DV\F C(OVvv—DM,) (21)

I=1ec§

and by Cauchy Schwarz, the following inequality can be estab
lished

a(Vh, Wh) — af (Vn, Wh) <'V|ZZ—IIDW'3HIIDVe Ovh|

I=1ecS
(22)
where|| - || is the norm||Dv|| = (vi jvi j)*/? as per (12) and!l is
the norm of the elasticity tenséd = (Ciji Cijii )>/2. In order to
bound||Ove— 0w, || in (22), it is required that the exact solutian
is sufficiently smoothy € C?) such that following Taylor series
expansion can be made about poifit

Ou(x) = Ou(x®) + D2u(x® ) (x— x°) (23)
where x® is the coordinates for the centroid of the element
andx€ € Q°. For a 3D tetrahedra, x¢ corresponds td, =
(1/3,1/3,1/3) in the parent coordinates of the tetrahedral. Next,

the following difference is computed using (3) and (4)

Ove — OV = Ove — Ou(X lzve OV —DOu(x')) (24)

wherex' is the coordinates of node ExpandingJu(x') in terms
of (23) and substituting into (24) yields

OVve— OV = Ove— Du(x®) — O%u ( e*)(x' —Xe)
_\%Z\/;(Dv‘?—mu +Z )K= (25)
ecs ecs

Taking the norm of the left and right sides of (25) and apmyin
the triangle inequality yields the inequality

IEve - DV'||<||Dve Ou(E) |+ 11 02u(

IR

ey

X)|Ih

2
1(OVE — Ou(® ||+VI ZZHD

“)Ih (26)



wherehis the maximum element diameter and thids— x¢|| < h

for all e. It turns out to be most convenient to bound (26) by the

L. norm; consequently, for some vectoe R3

|U[2,c0,0¢ = Maxsup

(27)
ijk xeqe

2
0X; 0%

Based on (14)and approximation theory [3,4], the followangpr
bound is exploited

aui OVi
— - — < 0.Q€
o, X5, | =Chiizea

xeQe

Vi=1:3  (28)

Using (3) and substituting

1/2
20 2
I52u0)] = (Z(aijg"ka)) ) <3v3lUizm0e (29)

ijk
and (28) into (26) yields
|[OVe— OV || < (C®+3V3) h|u[peqe
L ~V° e 3van i
+\TZZ(C +3V3)h|ulze 08
ecs
Schlu|2,oo,Q

(30)

since|ulz2.w,0| > |U[2.0,0e Ve Substituting the result (30) into
(22) and applying the Cauchy Schwartz inequality yields

1/2
Wellz)

1/2
Nn Ve ,
X (ZZ ZCh2 u|2)w79)

I=1ecS

ZZ*HDW‘EII IOve -V < (ZZ

I=1ecS I=1ec§

Ne 12 1/2
g<zve|we|2> (zvecmu@m,gz)
e=1 e=1

<C |Wh‘1’Q |U\2,m7QV h
(31)

where summations over nodésand setsS were reorganized
as summations over elememss in (7). and the semi-norm is
computed

(32)

Ne 1/2
Whl1.0 = <ZVEIIDWeIIZ>

e=1

since thelw® is constant o€, The desired bound in (20) is a
consequence of (31).
The next task is to show that

aj (Vh, Wh)

Su
b [whllx

WhEVR

<Ch (33)

Applying the results from (30),(31) and the Cauchy Schwark a
triangle inequalities to (19) provides the following bound

|Ow' — Ow?|| [|Ove — OV ||

Nn ve
a5 (Wh, V) <MD > " a® T

I=1ec§

ﬁZZ

I=1ec§

IIDW 1418w [|Eve — OV ||

MZZ

I=1ec§

‘DW I C]_|U‘200Qh)+GMC2|W|]_Q ‘u|2mQV h

(34)

where@ = max, a®!. At this point it remains to bound the re-
maining summation from the last inequality in (34). Using th
definition for nodal volume (4) and nodal strain (3) gives

ZZ—HDW\LZZ : V.Z Y o

I=1ecS I= 1ees

Sy G o

1= 1ees

<szumwen

1=18&cS

Nn Vé /2 Nn
< (ZZ4IID\N@|2) (ZZ
1—18cS =185

1/2
Vé
4)

< |Wh|1,0V (35)

The desired bound in (33) is a arrived at by substituting éiselit
of (35) into (34). Substitution of (20) and (33) into (13) pides
the final result

[U=Unl[1 <Ch (36)

provided sufficient smoothness of the exact solutiog C? N
(H)3.



Table 1. EIGENFREQUENCIES FROM TET AND HEX MESHES

1
Modes a=005| a=0| hex
Model | 0.258 | 0.209 | 0.258 15 -
Mode 10| 0.424 | 0.236 | 0.404
Mode 16| 0.452 | 0.248| 0.482 2 f
205 -
e —
SRR, | S
SEOEERERNY | St az2g 2 L
AL Dol | (R el 3 I
\eegeme NSRS 009
RRRRNRRREEE WA %y '
N%%N%\‘\\\%%Eﬁﬁf %&g%}v‘!&y%%lﬂ 2 -18 -16 -14 -12 -1 -08 -
N \ka\ygﬁﬂﬂﬂ log( h)
\ﬂ Figure 2. DISCRETIZATION ERROR FOR CANTILEVER BEAM

Figure 1. FIRST EIGENMODE: 0 = 0.05(LEFT) AND O = O (RIGHT) ) )
element actually converges at a rate &f and is clearly superior

to the linear triangle.
RESULTS
The following example problems demonstrate the necessity o
of the stabilization added to the nodal integration schenakgtlae Plasticity

good convergence characteristics of the proposed approach The Cook membrane Fig. 3 (see [6] for dimensions) with
uniform stabilization parameter was employed throughaehs ~ Von Mises plasticity £ = 70,v = 0.333, 0y = 0.243 and a lin-
thata®' = a with o = 0.05 ear hardening modulug; = 0.15) is considered. Meshes with

n=8,16,32 64 elements along the edges are considered and Fig.
_ _ 3 shows the plastic strain for thre= 16 case. The stabilization
Eigenanalysis stiffnessC (8) was chosen as follows1 = aE;/(2(1+v)) and
An eigenanalysis reveals the spurious modes of the nodal in- X = aA whereA = E/((1+V)(1— 2v)) with a = 0.05. The tip
tegration approach (i.ex = 0). The eigenvalues and first eigen-  displacement versusis shown plotted in Fig. 4 for the nodally
mode of a XIx1 block withp =1, E =1 andv = 0.499 are integrated triangle, linear triangle and the QM6 incomgati
shown in Table 1 and Fig. 1 respectively. The eigenfreqencie modes quadrilateral. The linear tetrahedral is very stifeveas
are compared to a mesh composed of 512 incompatible modesthe nodally integrated triangle performs as well or betiantthe
hexahedral elements.  With= 0, the spurious modes are not  jncompatible modes quadrilateral.
zero energy modes since the method is still stable in teorm
but not theH! norm. On the other hand, it is seen that further
mesh refinement yields convergence to the wrong eigenfreque
cies witha = 0. Whereas, the stabilized formulation converges
to the correct eigenfrequencies.

DISCUSSION

A stabilized nodally integrated tetrahedral element fdemu
tion was developed. It was shown analytically and numdgical
that the proposed formulation was stable and optimally epnv

Asymptotic Error gent. Although the element is not shown to be LBB stable, it pe
A standard benchmark is a cantilever beam0.499 loaded forms well in some cases where nearly incompressible otiplas

in shear as described in [5]. The energy of the discretinaticor material were used. More studies will be done for more génera

is plotted in Fig. 2 for the standard linear triangle elenserd the material cases such as nonlinear hardening and large deform

nodally integrated triangle with = 0.05. The nodally integrated  tions.
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